

Multi-Core Markov-Chain Monte Carlo (MC3)

	Author

	Patricio Cubillos and collaborators (see Team Members)

	Contact

	patricio.cubillos[at]oeaw.ac.at

	Organizations

	University of Central Florida (UCF), Space Research Institute (IWF) [http://iwf.oeaw.ac.at/]

	Web Site

	https://github.com/pcubillos/MCcubed

	Date

	Aug 10, 2019

Features

MC3 is a powerful Bayesian-statistics tool that offers:

	Levenberg-Marquardt least-squares optimization.

	Markov-chain Monte Carlo (MCMC) posterior-distribution sampling following the:

	Metropolis-Hastings algorithm with Gaussian proposal distribution, or

	Differential-Evolution MCMC (recomended).

The following features are available when running MC3:

	Execution from the Shell prompt or interactively through the Python interpreter.

	Single- or multiple-CPU parallel computing.

	Uniform non-informative, Jeffreys non-informative, or Gaussian-informative priors.

	Gelman-Rubin convergence test.

	Share the same value among multiple parameters.

	Fix the value of parameters to constant values.

	Correlated-noise estimation with the Time-averaging or the Wavelet-based Likelihood estimation methods.

Team Members

	Patricio Cubillos [https://github.com/pcubillos] (UCF, IWF) patricio.cubillos[at]oeaw.ac.at

	Joseph Harrington (UCF)

	Nate Lust (UCF)

	AJ Foster [http://aj-foster.com] (UCF)

	Madison Stemm (UCF)

	Michael Himes (UCF)

License

MC3 is open-source open-development software under the MIT License.

Be Kind

	Please cite this paper if you found MC3 useful for your research:

	Cubillos et al. 2017: On the Correlated Noise Analyses Applied to Exoplanet Light Curves [http://adsabs.harvard.edu/abs/2017AJ....153....3C], AJ, 153, 3.

We welcome your feedback, but do not necessarily guarantee support.
Please send feedback or inquiries to:

Patricio Cubillos (patricio.cubillos[at]oeaw.ac.at)

Thank you for using MC3!

Contents

	Getting Started
	System Requirements

	Install

	Compile

	Example 1 (Interactive)
	Outputs

	Example 2 (Shell Run)

	Tutorial
	Argument Inputs

	Configuration Files

	MCMC-run Configuration
	Data and Data Uncertainties

	Modeling Function

	Fitting Parameters

	Stepsize, Fixed, and Shared Paramerers

	Parameter Priors

	Random Walk

	MCMC Chains Configuration

	Optimization

	Gelman-Rubin Convergence Test

	Wavelet-Likelihood MCMC

	File Outputs

	Returned Values

	Resume a previous MC3 Run

	Inputs from Files
	Data

	Fitting Parameters

	References

	License

Documentation for Previous Releases

	MC3 version 1.1 [http://geco.oeaw.ac.at/patricio/MC3_v1.1.pdf].

Getting Started

System Requirements

MC3 (version 1.2) is known to work on Unix/Linux (Ubuntu)
and OSX (10.9+) machines, with the following software:

	Python (version 2.7)

	Numpy (version 1.8.2+)

	Scipy (version 0.13.3+)

	Matplotlib (version 1.3.1+)

	mpi4py (version 1.3.1+)

	Message Passing Interface, MPI (MPICH preferred)

MC3 may work with previous versions of these software;
however, we do not guarantee nor provide support for that.

Install

To obtain the latest MCcubed code, clone the repository to your local
machine with the following terminal commands.
First, keep track of the folder where you are putting MC3:

topdir=`pwd`
git clone https://github.com/pcubillos/MCcubed

Compile

Compile the C-extensions of the package:

cd $topdir/MCcubed/
make

To remove the program binaries, execute (from the respective directories):

make clean

Example 1 (Interactive)

The following example (demo01 [https://github.com/pcubillos/MCcubed/blob/master/examples/demo01/demo01.py]) shows a basic MCMC run with MC3 from
the Python interpreter.
This example fits a quadratic polynomial curve to a dataset.
First create a folder to run the example (alternatively, run the example
from any location, but adjust the paths of the Python script):

cd $topdir
mkdir run01
cd run01

Now start a Python interactive session. This script imports the necesary modules, creates a noisy dataset, and runs the MCMC:

import sys
import numpy as np
import matplotlib.pyplot as plt
sys.path.append("../MCcubed/")
import MCcubed as mc3

Get function to model (and sample):
sys.path.append("../MCcubed/examples/models/")
from quadratic import quad

Create a synthetic dataset:
x = np.linspace(0, 10, 100) # Independent model variable
p0 = 3, -2.4, 0.5 # True-underlying model parameters
y = quad(p0, x) # Noiseless model
uncert = np.sqrt(np.abs(y)) # Data points uncertainty
error = np.random.normal(0, uncert) # Noise for the data
data = y + error # Noisy data set

Fit the quad polynomial coefficients:
params = np.array([20.0, -2.0, 0.1]) # Initial guess of fitting params.

Run the MCMC:
posterior, bestp = mc3.mcmc(data, uncert, func=quad, indparams=[x],
 params=params, numit=3e4, burnin=100)

Outputs

That’s it, now let’s see the results. MC3 will print out to screen a
progress report every 10% of the MCMC run, showing the time, number of
times a parameter tried to go beyond the boundaries, the current
best-fitting values, and corresponding \(\chi^{2}\); for example:

::
 Multi-Core Markov-Chain Monte Carlo (MC3).
 Version 1.2.0.
 Copyright (c) 2015-2016 Patricio Cubillos and collaborators.
 MC3 is open-source software under the MIT license (see LICENSE).
::

Start MCMC chains (Fri Feb 5 10:45:17 2016)

[:] 10.0% completed (Fri Feb 5 10:45:17 2016)
Out-of-bound Trials:
 [0 0 0]
Best Parameters: (chisq=111.0541)
[3.79473869 -2.73050517 0.51636233]

...

[::::::::::] 100.0% completed (Fri Feb 5 10:45:18 2016)
Out-of-bound Trials:
 [0 0 0]
Best Parameters: (chisq=111.0449)
[3.77284276 -2.72330815 0.51634107]

Fin, MCMC Summary:

 Burned in iterations per chain: 100
 Number of iterations per chain: 3000
 MCMC sample size: 29000
 Acceptance rate: 39.04%

 Best-fit params Uncertainties S/N Sample Mean Note
 3.7728428e+00 3.8407332e-01 9.82 3.7694995e+00
 -2.7233081e+00 2.1964109e-01 12.40 -2.7232216e+00
 5.1634107e-01 2.6891868e-02 19.20 5.1641806e-01

 Best-parameter's chi-squared: 111.0449
 Bayesian Information Criterion: 124.8604
 Reduced chi-squared: 1.1448
 Standard deviation of residuals: 2.93518

At the end of the MCMC run, MC3 displays a summary of the MCMC sample,
best-fitting parameters, uncertainties, mean values, and other statistics.

Note

More information will be displayed, depending on the MCMC configuration (see the Tutorial).

Additionally, the user has the option to generate several plots of the MCMC
sample: the best-fitting model and data curves, parameter traces, and
marginal and pair-wise posteriors (these plots can also be generated
automatically with the MCMC run).
The plots sub-package provides the plotting functions:

Plot best-fitting model and binned data:
mc3.plots.modelfit(data, uncert, x, y, title="Best-fitting Model",
 savefile="quad_bestfit.png")
Plot trace plot:
parname = ["constant", "linear", "quadratic"]
mc3.plots.trace(posterior, title="Fitting-parameter Trace Plots",
 parname=parname, savefile="quad_trace.png")

Plot pairwise posteriors:
mc3.plots.pairwise(posterior, title="Pairwise posteriors", parname=parname,
 savefile="quad_pairwise.png")

Plot marginal posterior histograms:
mc3.plots.histogram(posterior, title="Marginal posterior histograms",
 parname=parname, savefile="quad_hist.png")

[image: _images/quad_bestfit.png]
[image: _images/quad_trace.png]
[image: _images/quad_pairwise.png]
[image: _images/quad_hist.png]

Note

These plots can also be automatically generated along with the
MCMC run (see File Outputs [http://pcubillos.github.io/MCcubed/tutorial.html#file-outputs]).

Example 2 (Shell Run)

The following example
(demo02 [https://github.com/pcubillos/MCcubed/blob/master/examples/demo02/])
shows a basic MCMC run from the shell prompt.
To start, create a working directory to place the files and execute the program:

cd $topdir
mkdir run02
cd run02

Copy the demo files to run MC3 (configuration and data files):

cp $topdir/MCcubed/examples/demo02/* .

Call the MC3 executable, providing the configuration file as
command-line argument:

mpirun $topdir/MCcubed/MCcubed/mccubed.py -c MCMC.cfg

Note

If you don’t have MPI or dont want to use it, make the previous call as:

python $topdir/MCcubed/MCcubed/mccubed.py -c MCMC.cfg

Noting that, in this last case, you need to have mpi=False.

Tutorial

This tutorial describes the available options when running an MCMC with MC3.
As said before, the MCMC can be run from the shell prompt or through a function call in the Python interpreter.

Argument Inputs

When running from the shell, the arguments can be input as command-line
arguments. To see all the available options, run:

./mccubed.py --help

When running from a Python interactive session, the arguments can be input as function arguments. To see the available options, run:

import MCcubed as mc3
help(mc3.mcmc)

Additionally (and strongly recommended),
wether you are running the MCMC from the shell or from
the interpreter, the arguments can be input through a configuration file.

Configuration Files

The MC3 configuration file follows the ConfigParser [https://docs.python.org/2/library/configparser.html] format.
The following code block shows an example for an MC3 configuration file:

Comment lines (like this one) are allowed and ignored
Strings don't need quotation marks
[MCMC]
DEMC general options:
numit = 1e5
burnin = 100
nchains = 10
walk = demc
mpi = True
Fitting function:
func = quad quadratic ../MCcubed/examples/models
Model inputs:
params = params.dat
indparams = indp.npz
The data and uncertainties:
data = data.npz

MCMC-run Configuration

This example describes the basic MCMC argument configuration.
The following sub-sections make up a script meant to be run from the Python
interpreter. The complete example script is located at tutorial01 [https://github.com/pcubillos/MCcubed/blob/master/examples/tutorial01/tutorial01.py].

Data and Data Uncertainties

The data argument (required) defines the dataset to be fitted.
This argument can be either a 1D float ndarray or the filename (a string)
where the data array is located.

The uncert argument (required) defines the \(1\sigma\) uncertainties
of the data array.
This argument can be either a 1D float ndarray (same length of data) or the filename where the data uncertainties are located.

Create a synthetic dataset using a quadratic polynomial curve:
x = np.linspace(0, 10, 100) # Independent model variable
p0 = 3, -2.4, 0.5 # True-underlying model parameters
y = quad(p0, x) # Noiseless model
uncert = np.sqrt(np.abs(y)) # Data points uncertainty
error = np.random.normal(0, uncert) # Noise for the data
data = y + error # Noisy data set

Note

See the Data Section below to find out how to set data and uncert as a filename.

Modeling Function

The func argument (required) defines the parameterized modeling function.
The user can set func either as a callable, e.g.:

Define the modeling function as a callable:
sys.path.append("./../models/")
from quadratic import quad
func = quad

or as a tuple of strings pointing to the modeling function, e.g.:

A three-elements tuple indicates the function name, the module
name (without the '.py' extension), and the path to the module.
func = ("quad", "quadratic", "./../models/")

Alternatively, if the module is already within the scope of the
Python path, the user can set func with a two-elements tuple:
sys.path.append("./../models/")
func = ("quad", "quadratic")

Note

Important!

The only requirement for the modeling function is that its arguments follow
the same structure of the callable in scipy.optimize.leastsq, i.e.,
the first argument contains the list of fitting parameters.

The indparams argument (optional) packs any additional argument that the
modeling function may require:

indparams contains additional arguments of func (if necessary). Each
additional argument is an item in the indparams tuple:
indparams = [x]

Note

Even if there is only one additional argument to func, indparams must
be defined as a tuple (as in the example above). Eventually, the modeling
function could be called with the following command:

model = func(params, *indparams)

Fitting Parameters

The params argument (required) contains the initial-guess values for the model fitting parameters. The params argument must be a 1D float ndarray.

Array of initial-guess values of fitting parameters:
params = np.array([20.0, -2.0, 0.1])

The pmin and pmax arguments (optional) set the lower and upper boundaries explored by the MCMC for each fitting parameter.

Lower and upper boundaries for the MCMC exploration:
pmin = np.array([-10.0, -20.0, -10.0])
pmax = np.array([40.0, 20.0, 10.0])

If a proposed step falls outside the set boundaries,
that iteration is automatically rejected.
The default values for each element of pmin and pmax are
-np.inf and +np.inf, respectively.
The pmin and pmax arrays must have the same size of params.

Stepsize, Fixed, and Shared Paramerers

The stepsize argument (optional) is a 1D float ndarray,
where each element correspond to one of the fitting parameters.
The stepsize has multiple uses.
When walk='mrw' (see Random Walk section),
stepsize sets the standard deviation,
\(\sigma\), of the Gaussian proposal jump for the given parameter,
(see Eq. (4)).
When walk='demc', stepsize sets the standard-deviation jump
only of the initial jump (which is used to initialize the chains).

stepsize = np.array([1.0, 0.5, 0.1])

If you to fix a parameter at the given initial-guess value,
set the stepsize of the given parameter to \(0\).

If you want to share the same value for multiple parameters
along the MCMC exploration (multiple parametes will),
set the stepsize of the parameter equal to the negative
index of the sharing parameter, e.g.:

If I want the second, third, and fourth model parameters to share the same value:
stepsize = np.array([1.0, 3.0, -2, -2])

Note

Clearly, in the given example it doesn’t make sense to share parameter
values. However, for an eclipe model for example, one may want to share
the ingress and egress times.

Parameter Priors

The prior, priorlow, and priorup arguments (optional) set the
prior probability distributions of the fitting parameters.
Each of these arguments is a 1D float ndarray.

priorlow defines whether to use uniform non-informative (priorlow = 0.0),
Jeffreys non-informative (priorlow < 0.0), or Gaussian prior (priorlow > 0.0).
prior and priorup are irrelevant if priorlow <= 0 (for a given parameter)
prior = np.array([0.0, 0.0, 0.0])
priorlow = np.array([0.0, 0.0, 0.0])
priorup = np.array([0.0, 0.0, 0.0])

MC3 supports three types of priors.
If a value of priorlow is \(0.0\) (default) for a given parameter,
the MCMC will apply a uniform non-informative prior:

(1)\[p(\theta) = \frac{1}{\theta_{\rm max} - \theta_{\rm min}},\]

Note

This is appropriate when there is no prior knowledge of the
value of \(\theta\).

If priorlow is less than \(0.0\) for a given parameter,
the MCMC will apply a Jeffreys non-informative prior
(uniform probability per order of magnitude):

(2)\[p(\theta) = \frac{1}{\theta \ln(\theta_{\rm max}/\theta_{\rm min})},\]

Note

This is valid only when the parameter takes positive values.
This is a more appropriate prior than a uniform prior when \(\theta\)
can take values over several orders of magnitude.
For more information, see [Gregory2005], Sec. 3.7.1.

Note

Practical note!

In practice, I have seen better results when one fits
\(\log(\theta)\) rather than \(\theta\) with a Jeffreys prior.

Lastly, if priorlow is greater than \(0.0\) for a given parameter,
the MCMC will apply a Gaussian informative prior:

(3)\[p(\theta) = \frac{1}{\sqrt{2\pi\sigma_{p}^{2}}}
 \exp\left(\frac{-(\theta-\theta_{p})^{2}}{2\sigma_{p}^{2}}\right),\]

where prior sets the prior value \(\theta_{p}\), and
priorlow and priorup
set the lower and upper \(1\sigma\) prior uncertainties,
\(\sigma_{p}\), of the prior (depending if the proposed value
\(\theta\) is lower or higher than \(\theta_{p}\)).

Note

Note that, even when the parameter boundaries are not known or when
the parameter is unbound, this prior is suitable for use in the MCMC
sampling, since the proposed and current state priors divide out in
the Metropolis ratio.

Random Walk

The walk argument (optional) defines which random-walk algorithm
will use the MCMC:

Choose between: {'demc' or 'mrw'}:
walk = 'demc'

If walk = mrw, MC3 will use the classical Metropolis-Hastings
algorithm with Gaussian proposal distributions. I.e., in each
iteration and for each parameter, \(\theta\), the MCMC will propose
jumps, drawn from
Gaussian distributions centered at the current value, \(\theta_0\), with
a standard deviation, \(\sigma\), given by the values in the stepsize
argument:

(4)\[q(\theta) = \frac{1}{\sqrt{2 \pi \sigma^2}}
 \exp \left(-\frac{(\theta-\theta_0)^2}{2 \sigma^2}\right)\]

If walk = demc (default value), MC3 will use Differential-Evolution
MCMC algorithm (for further reading, see [terBraak2006]).

MCMC Chains Configuration

The following arguments set the MCMC chains configuration:

mpi = True # Multiple or single-CPU run
numit = 3e4 # Number of MCMC samples to compute
nchains = 10 # Number of parallel chains
burnin = 100 # Number of burned-in samples per chain
thinning = 1 # Thinning factor for outputs

The mpi argument (optional, boolean, default=False) determines if
MC3 will run in multiple or a single CPU.

Note

In a multi-core run, MC3 will assign one CPU to each chain.
Additionaly, the main MCMC central hub will use one CPU.
Thus, the total number of CPUs used is nchains + 1.

Normally, if you ask MC3 to use more CPUs than the
number of CPUs available, the code will be much much slower.

The numit argument (optional, float, default=1e5) sets the total
number of samples to compute.

The nchains argument (optional, integer, default=10) sets the number
of parallel chains to use. The number of iterations run for each chain
will be numit/nchains.

Note

Even for single-CPU runs, the MCMC algorithm will use
nchains parallel chains.

The burnin argument (optional, integer, default=0) sets the number
of burned-in (removed) iterations at the beginning of each chain.

The thinning argument (optional, integer, default=1) sets the chains
thinning factor (discarding all but every thinning-th sample).

Note

Thinning is often unnecessary for a DEMC run, since this algorithm
reduces significatively the sampling autocorrelation.

Optimization

The leastsq argument (optional, boolean, default=False) is a flag that
indicates MC3 to run a least-squares optimization before running the MCMC.
MC3 implements the Levenberg-Marquardt algorithm via the
scipy.optimize.leastsq function.

Note

The parameter boundaries, fixed and shared-values, and priors
setup will apply for the minimization.

The chisqscale argument (optional, boolean, default=False) is a flag that
indicates MC3 to scale the data uncertainties to force a reduced
\(\chi^{2}\) equal to \(1\). The scaling applies by multiplying all
uncertainties by a common scale factor.

leastsq = True # Least-squares minimization prior to the MCMC
chisqscale = False # Scale the data uncertainties such red.chisq = 1

Gelman-Rubin Convergence Test

The grtest argument (optional, boolean, default=False) is a flag that
indicates MC3 to run the Gelman-Rubin convergence test for the MCMC sample of
fitting parameters.
Values substantially larger than 1 indicate non-convergence.
See [GelmanRubin1992] for further information.

The grexit argument (optional, boolean, default=False)
is a flag that allows the MCMC to stop if the Gelman-Rubin test returns
values below 1.01 for all parameter, two consecutive times.

grtest = True # Calculate the GR convergence test
grexit = False # Stop the MCMC after two successful GR

Note

The Gelman-Rubin test is computed every 10% of the MCMC exploration.

Wavelet-Likelihood MCMC

The wlike argument (optional, boolean, default=False) allows MC3 to
implement the Wavelet-based method to estimate time-correlated noise.
When using this method, the used must append the three additional fitting
parameters (\(\gamma, \sigma_{r}, \sigma_{w}\)) from Carter & Winn (2009)
to the end of the params array. Likewise, add the correspoding values
to the pmin, pmax, stepsize, prior, priorlow,
and priorup arrays.
For further information see [CarterWinn2009].

wlike = False # Use Carter & Winn's Wavelet-likelihood method.

File Outputs

The following arguments set the output files produced by MC3:

logfile = 'MCMC.log' # Save the MCMC screen outputs to file
savefile = 'MCMC_sample.npy' # Save the MCMC parameters sample to file
savemodel = 'MCMC_models.npy' # Save the MCMC evaluated models to file
plots = True # Generate best-fit, trace, and posterior plots
rms = False # Compute and plot the time-averaging test

The logfile argument (optional, string, default=None)
sets the-text file name where to store MC3’s screen output.

The savefile and savemodel arguments (optional, string, default=None)
set the file names where to store the MCMC parameters sample and evaluated
models.
MC3 saves the files as three-dimensional .npy binary files,
The first dimension corresponds to the chain index,
the second dimension the fitting parameter or data point
(for savefile and savemodel, respectively),
and the third dimension the iteration number.
The files can be read with the numpy.load() function.

The plots argument (optional, boolean, default=False) is a flag that
indicates MC3 to generate and store the data (along with the best-fitting
model) plot,
the MCMC-chain trace plot for each parameter,
and the marginalized and pair-wise posterior plots.

The rms argument (optional, boolean, default=False) is a flag that
indicates MC3 to compute the time-averaging test for time-correlated noise
and generate a rms-vs-binsize plot. For further information see [Winn2008].

Returned Values

When run from a pyhton interactive session, MC3 will return two arrays:
posterior a 2D array containing the burned-in, thinned MCMC sample
of the parameters posterior distribution (with dimensions
[nparameters, nsamples]); and bestp, a 1D array with the best-fitting
parameters.

Run the MCMC:
posterior, bestp = mc3.mcmc(data=data, uncert=uncert, func=func, indparams=indparams,
 params=params, pmin=pmin, pmax=pmax, stepsize=stepsize,
 prior=prior, priorlow=priorlow, priorup=priorup,
 leastsq=leastsq, chisqscale=chisqscale, mpi=mpi,
 numit=numit, nchains=nchains, walk=walk, burnin=burnin,
 grtest=grtest, grexit=grexit, wlike=wlike, logfile=logfile,
 plots=plots, savefile=savefile, savemodel=savemodel, rms=rms)

Resume a previous MC3 Run

TBD

Inputs from Files

The data, uncert, indparams, params, pmin, pmax,
stepsize, prior, priorlow, and priorup input arrays
can be optionally be given as input file.
Furthermore, multiple input arguments can be combined into a single file.

Data

The data, uncert, and indparams inputs can be provided as
binary numpy .npz files.
data and uncert can be stored together into a single file.
An indparams input file contain the list of independent variables
(must be a list, even if there is a single independent variable).

The utils sub-package of MC3 provide utility functions to
save and load these files.
The preamble.py file in
demo02 [https://github.com/pcubillos/MCcubed/blob/master/examples/demo02/]
gives an example of how to create data and indparams input files:

Import the necessary modules:
import sys
import numpy as np

Import the modules from the MCcubed package:
sys.path.append("../MCcubed/")
import MCcubed as mc3
sys.path.append("../MCcubed/examples/models/")
from quadratic import quad

Create a synthetic dataset using a quadratic polynomial curve:
x = np.linspace(0.0, 10, 100) # Independent model variable
p0 = 3, -2.4, 0.5 # True-underlying model parameters
y = quad(p0, x) # Noiseless model
uncert = np.sqrt(np.abs(y)) # Data points uncertainty
error = np.random.normal(0, uncert) # Noise for the data
data = y + error # Noisy data set

data.npz contains the data and uncertainty arrays:
mc3.utils.savebin([data, uncert], 'data.npz')
indp.npz contains a list of variables:
mc3.utils.savebin([x], 'indp.npz')

Fitting Parameters

The params, pmin, pmax, stepsize,
prior, priorlow, and priorup inputs
can be provided as plain ASCII files.
For simplycity all of these input arguments can be combined into
a single file.

In the params file, each line correspond to one model
parameter, whereas each column correspond to one of the input array arguments.
This input file can hold as few or as many of these argument arrays,
as long as they are provided in that exact order.
Empty or comment lines are allowed (and ignored by the reader).
A valid params file look like this:

params pmin pmax stepsize
 10 -10 60 1
 16 -20 20 0.5
 -1.8 -10 10 0.1

Alternatively, the utils sub-package of MC3 provide utility
functions to save and load these files:

params = [10, 16, -1.8]
pmin = [-10, -20, -10]
pmax = [60, 20, 10]
stepsize = [1, 0.5, 0.1]

Store ASCII arrays:
mc3.utils.saveascii([params, pmin, pmax, stepsize], 'params.txt')

Then, to run the MCMC simply provide the input file names to the MC3
routine:

To run MCMC, set the arguments to the file names:
data = 'data.npz'
indparams = 'indp.npz'
params = 'params.txt'
Run MCMC:
posterior, bestp = mc3.mcmc(data=data, func=func, indparams=indparams,
 params=params,
 numit=numit, nchains=nchains, walk=walk, grtest=grtest,
 leastsq=leastsq, chisqscale=chisqscale,
 burnin=burnin, plots=plots, savefile=savefile,
 savemodel=savemodel, mpi=mpi)

References

	CarterWinn2009

	Carter & Winn (2009): Parameter Estimation from Time-series Data with Correlated Errors: A Wavelet-based Method and its Application to Transit Light Curves [http://adsabs.harvard.edu/abs/2009ApJ...704...51C]

	GelmanRubin1992

	Gelman & Rubin (1992): Inference from Iterative Simulation Using Multiple Sequences [http://projecteuclid.org/euclid.ss/1177011136]

	Gregory2005

	Gregory (2005): Bayesian Logical Data Analysis for the Physical Sciences [http://adsabs.harvard.edu/abs/2005blda.book.....G]

	terBraak2006

	ter Braak (2006): A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution [http://dx.doi.org/10.1007/s11222-006-8769-1]

	Winn2008

	Winn et al. (2008): The Transit Light Curve Project. IX. Evidence for a Smaller Radius of the Exoplanet XO-3b [http://adsabs.harvard.edu/abs/2008ApJ...683.1076W]

License

The MIT License (MIT)

Copyright (c) 2015-2018 Patricio Cubillos and Collaborators

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/quad_pairwise.png
Pairwise posteriors

Ajisusp juiod pazijewoN
R 2 8 8 8 8 « o
EE— T]
n o n o n o wn o wn
— N o m 0 n b < "
| I I I ° =] o o o
Jeauy Jneipenb

S1-

G-

(o2

S n o9 wn 9o
o~ o~ m m <
constant

n
-

linear

_images/quad_trace.png
Fitting-parameter Trace Plots

5-2.0

£-25
-3.0
-35
0.60
0.55

2 0.50

@

5 0.45

]

2 0.40
0.35
0.30

0 5000 10000 15000 20000 25000 30000
MCMC iteration

_images/quad_bestfit.png
w
G

w
=)

— Best Fit
§ { Binned Data

y
Boe NN
U o u o O S U

Residuals

POBNONDO

o

Best-fitting Model

_images/quad_hist.png
Marginal posterior histograms

4500
4000
3500
3000
2500
2000
1500
1000

500

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Multi-Core Markov-Chain Monte Carlo (MC3)

 		
 Getting Started

 		
 System Requirements

 		
 Install

 		
 Compile

 		
 Example 1 (Interactive)

 		
 Outputs

 		
 Example 2 (Shell Run)

 		
 Tutorial

 		
 Argument Inputs

 		
 Configuration Files

 		
 MCMC-run Configuration

 		
 Data and Data Uncertainties

 		
 Modeling Function

 		
 Fitting Parameters

 		
 Stepsize, Fixed, and Shared Paramerers

 		
 Parameter Priors

 		
 Random Walk

 		
 MCMC Chains Configuration

 		
 Optimization

 		
 Gelman-Rubin Convergence Test

 		
 Wavelet-Likelihood MCMC

 		
 File Outputs

 		
 Returned Values

 		
 Resume a previous MC3 Run

 		
 Inputs from Files

 		
 Data

 		
 Fitting Parameters

 		
 References

 		
 License

_static/up-pressed.png

_static/up.png

