

Multi-Core Markov-Chain Monte Carlo (MC3)

	Author

	Patricio Cubillos and collaborators (see Collaborators)

	Contact

	patricio.cubillos[at]oeaw.ac.at

	Organizations

	University of Central Florida (UCF), Space Research Institute (IWF) [http://iwf.oeaw.ac.at/]

	Web Site

	https://github.com/pcubillos/MCcubed

	Date

	Aug 11, 2019

Features

MC3 is a powerful Bayesian-statistics tool that offers:

	Levenberg-Marquardt least-squares optimization.

	Markov-chain Monte Carlo (MCMC) posterior-distribution sampling following the:

	Metropolis-Hastings algorithm with Gaussian proposal distribution,

	Differential-Evolution MCMC (DEMC), or

	DEMCzs (Snooker).

The following features are available when running MC3:

	Execution from the Shell prompt or interactively through the Python interpreter.

	Single- or multiple-CPU parallel computing.

	Uniform non-informative, Jeffreys non-informative, or Gaussian-informative priors.

	Gelman-Rubin convergence test.

	Share the same value among multiple parameters.

	Fix the value of parameters to constant values.

	Correlated-noise estimation with the Time-averaging or the Wavelet-based Likelihood estimation methods.

Note

MC3 works in both Python2.7 and Python3!

Collaborators

All of these people have made a direct or indirect contribution to
MCcubed, and in many instances have been fundamental in the
development of this package.

	Patricio Cubillos [https://github.com/pcubillos] (UCF, IWF) patricio.cubillos[at]oeaw.ac.at

	Joseph Harrington (UCF)

	Nate Lust (UCF)

	AJ Foster [http://aj-foster.com] (UCF)

	Madison Stemm (UCF)

	Tom Loredo (Cornell)

	Kevin Stevenson (UCF)

	Chris Campo (UCF)

	Matt Hardin (UCF)

	Ryan Hardy (UCF)

	Monika Lendl (IWF)

	Ryan Challener (UCF)

	Michael Himes (UCF)

Documentation

	Getting Started
	System Requirements

	Install

	Compile

	Example 1 Interactive
	Outputs

	Example 2: Shell Run

	Troubleshooting

	MCMC Tutorial
	Argument Inputs

	Configuration Files

	MCMC Run
	Input Data

	Modeling Function

	Fitting Parameters

	Stepsize, Fixed, and Shared Parameters

	Parameter Priors

	Parameter Names

	Random Walk

	MCMC Config

	Optimization

	Convergence

	Wavelet-Likelihood MCMC

	Fine-tuning

	File Outputs

	Returned Values

	Inputs from Files
	Data

	Fitting Parameters

	References

	Optimization Tutorial
	Optimization Algorithm

	Fitting Parameters

	Modeling Function

	Data and Data Uncertainties

	Independent Parameters

	Stepsize: Fixed, and Shared Paramerers

	Parameter Boundaries

	Parameter Priors

	Outputs

	Example

	Time Averaging
	Example

	References

	Contributing
	Raising Issues

	Programming Style

	Pull Requests

	License

Be Kind

	Please cite this paper if you found MC3 useful for your research:

	Cubillos et al. (2017): On the Correlated-noise Analyses Applied to
Exoplanet Light Curves [http://adsabs.harvard.edu/abs/2017AJ....153....3C], AJ, 153, 3.

We welcome your feedback, but do not necessarily guarantee support.
Please send feedback or inquiries to:

Patricio Cubillos (patricio.cubillos[at]oeaw.ac.at)

MC3 is open-source open-development software under the MIT
License.

Thank you for using MC3!

Documentation for Previous Releases

If you have an older version, you can compile these docs, according to your version into a pdf with the following commands:

cd into MCcubed/docs
make latexpdf

The output pdf docs will be located at .../MCcubed/docs/latex/MC3.pdf.

Getting Started

System Requirements

MC3 (version 2.2) is known to work on Unix/Linux (Ubuntu)
and OSX (10.9+) machines, with the following software:

	Python (version 2.7+ or 3.4+)

	Numpy (version 1.8.2+)

	Scipy (version 0.17.1+)

	Matplotlib (version 1.3.1+)

MC3 may work with previous versions of these software;
however, we do not guarantee nor provide support for that.

Install

To obtain the latest MCcubed code, clone the repository to your local
machine with the following terminal commands.
First, keep track of the folder where you are putting MC3:

topdir=`pwd`
git clone https://github.com/pcubillos/MCcubed

Compile

To compile the C-extensions of the package run:

cd $topdir/MCcubed/
make

To compile the documentation of the package, run:

cd $topdir/MCcubed/docs
make latexpdf

A pdf version of this documentation will be available at
$topdir/MCcubed/docs/latex/MC3.pdf. To remove the program
binaries, run:

cd $topdir/MCcubed/
make clean

Example 1 Interactive

The following example (demo01 [https://github.com/pcubillos/MCcubed/blob/master/examples/demo01/demo01.py]) shows a basic MCMC run with MC3 from
the Python interpreter.
This example fits a quadratic polynomial curve to a dataset.
First create a folder to run the example (alternatively, run the example
from any location, but adjust the paths of the Python script):

cd $topdir
mkdir run01
cd run01

Now start a Python interactive session. This script imports the
necesary modules, creates a noisy dataset, and runs the MCMC:

import sys
import numpy as np

sys.path.append("../MCcubed/")
import MCcubed as mc3

Get function to model (and sample):
sys.path.append("../MCcubed/examples/models/")
from quadratic import quad

Create a synthetic dataset:
x = np.linspace(0, 10, 1000) # Independent model variable
p0 = [3, -2.4, 0.5] # True-underlying model parameters
y = quad(p0, x) # Noiseless model
uncert = np.sqrt(np.abs(y)) # Data points uncertainty
error = np.random.normal(0, uncert) # Noise for the data
data = y + error # Noisy data set

Fit the quad polynomial coefficients:
params = np.array([10.0, -2.0, 0.1]) # Initial guess of fitting params.
stepsize = np.array([0.03, 0.03, 0.05])

Run the MCMC:
bestp, CRlo, CRhi, stdp, posterior, Zchain = mc3.mcmc(data, uncert,
 func=quad, indparams=[x], params=params, stepsize=stepsize,
 nsamples=1e5, burnin=1000)

The code will return the best-fitting values (bestp), the lower
and upper boundaries of the 68%-credible region (CRlo and
CRhi, with respect to bestp), the standard deviation of the
marginal posteriors (stdp), the posterior sample (posterior),
and the chain index for each posterior sample (Zchain).

Outputs

That’s it, now let’s see the results. MC3 will print out to screen a
progress report every 10% of the MCMC run, showing the time, number of
times a parameter tried to go beyond the boundaries, the current
best-fitting values, and corresponding \(\chi^{2}\); for example:

::
 Multi-core Markov-chain Monte Carlo (MC3).
 Version 2.3.20.
 Copyright (c) 2015-2018 Patricio Cubillos and collaborators.
 MC3 is open-source software under the MIT license (see LICENSE).
::

Yippee Ki Yay Monte Carlo!
Start MCMC chains (Sun Nov 4 16:20:40 2018)

[:] 10.0% completed (Sun Nov 4 16:20:42 2018)
Out-of-bound Trials:
[0 0 0]
Best Parameters: (chisq=1024.2992)
[3.0603825 -2.42108869 0.50075726]

...

[::::::::::] 100.0% completed (Sun Nov 4 16:20:47 2018)
Out-of-bound Trials:
[0 0 0]
Best Parameters: (chisq=1024.2772)
[3.0679888 -2.4229654 0.50064008]

Fin, MCMC Summary:

 Total number of samples: 100002
 Number of parallel chains: 7
 Average iterations per chain: 14286
 Burned-in iterations per chain: 1000
 Thinning factor: 1
 MCMC sample size (thinned, burned): 93002
 Acceptance rate: 26.76%

Param name Best fit Lo HPD CR Hi HPD CR Mean Std dev S/N
----------- ----------------------------------- ---------------------- ---------
Param 1 3.0577e+00 -1.2951e-01 1.1875e-01 3.0555e+00 1.2384e-01 24.7
Param 2 -2.4055e+00 -6.7695e-02 7.5366e-02 -2.4033e+00 7.1281e-02 33.7
Param 3 4.9933e-01 -8.9207e-03 8.5756e-03 4.9902e-01 8.7305e-03 57.2

 Best-parameter's chi-squared: 1024.2772
 Bayesian Information Criterion: 1045.0004
 Reduced chi-squared: 1.0274
 Standard deviation of residuals: 2.78898

At the end of the MCMC run, MC3 displays a summary of the MCMC
sample, best-fitting parameters, credible-region boundaries, posterior
mean and standard deviation, among other statistics.

Note

More information will be displayed, depending on the MCMC
configuration (see the MCMC Tutorial).

Additionally, the user has the option to generate several plots of the MCMC
sample: the best-fitting model and data curves, parameter traces, and
marginal and pair-wise posteriors (these plots can also be generated
automatically with the MCMC run by setting plots=True).
The plots sub-package provides the plotting functions:

Plot best-fitting model and binned data:
mc3.plots.modelfit(data, uncert, x, y, savefile="quad_bestfit.png")
Plot trace plot:
pnames = ["constant", "linear", "quadratic"]
mc3.plots.trace(posterior, Zchain, pnames=pnames, savefile="quad_trace.png")

Plot pairwise posteriors:
mc3.plots.pairwise(posterior, pnames=pnames, bestp=bestp,
 savefile="quad_pairwise.png")

Plot marginal posterior histograms (with 68% highest-posterior-density credible regions):
mc3.plots.histogram(posterior, pnames=pnames, bestp=bestp, percentile=0.683,
 savefile="quad_hist.png")

[image: _images/quad_bestfit.png]
[image: _images/quad_trace.png]
[image: _images/quad_pairwise.png]
[image: _images/quad_hist.png]

Note

These plots can also be automatically generated along with the
MCMC run (see File Outputs [http://pcubillos.github.io/MCcubed/tutorial.html#file-outputs]).

Example 2: Shell Run

The following example
(demo02 [https://github.com/pcubillos/MCcubed/blob/master/examples/demo02/])
shows a basic MCMC run from the shell prompt.
To start, create a working directory to place the files and execute the program:

cd $topdir
mkdir run02
cd run02

Copy the demo files (configuration and data files) to the run folder:

cp $topdir/MCcubed/examples/demo02/* .

Call the MC3 executable, providing the configuration file as
command-line argument:

$topdir/MCcubed/mc3.py -c MCMC.cfg

Troubleshooting

There may be an error with the most recent version of the
multiprocessing module (version 2.6.2.1). If the MCMC breaks with
an “AttributeError: __exit__” error message pointing to a
multiprocessing module, try installing a previous version of it with
this shell command:

pip install --upgrade 'multiprocessing<2.6.2'

MCMC Tutorial

This tutorial describes the available options when running an MCMC with MC3.
As said before, the MCMC can be run from the shell prompt or through a function call in the Python interpreter.

Argument Inputs

When running from the shell, the arguments can be input as command-line
arguments. To see all the available options, run:

./mc3.py --help

When running from a Python interactive session, the arguments can be input
as function arguments. To see the available options, run:

import MCcubed as mc3
help(mc3.mcmc)

Additionally (and strongly recommended),
whether you are running the MCMC from the shell or from
the interpreter, the arguments can be input through a configuration file.

Configuration Files

The MC3 configuration file follows the ConfigParser [https://docs.python.org/2/library/configparser.html] format.
The following code block shows an example for an MC3 configuration file:

Comment lines (like this one) are allowed and ignored
Strings don't need quotation marks
[MCMC]
DEMC general options:
nsamples = 1e5
burnin = 1000
nchains = 7
walk = snooker
Fitting function:
func = quad quadratic ../MCcubed/examples/models
Model inputs:
params = params.dat
indparams = indp.npz
The data and uncertainties:
data = data.npz

MCMC Run

This example describes the basic MCMC argument configuration.
The following sub-sections make up a script meant to be run from the Python
interpreter. The complete example script is located at tutorial01 [https://github.com/pcubillos/MCcubed/blob/master/examples/tutorial01/tutorial01.py].

Input Data

The data argument (required) defines the dataset to be fitted.
This argument can be either a 1D float ndarray or the filename (a string)
where the data array is located.

The uncert argument (required) defines the \(1\sigma\) uncertainties
of the data array.
This argument can be either a 1D float ndarray (same length of data) or the filename where the data uncertainties are located.

Create a synthetic dataset using a quadratic polynomial curve:
import sys
import numpy as np
sys.path.append("../MCcubed/examples/models/")
from quadratic import quad

x = np.linspace(0, 10, 1000) # Independent model variable
p0 = [3, -2.4, 0.5] # True-underlying model parameters
y = quad(p0, x) # Noiseless model
uncert = np.sqrt(np.abs(y)) # Data points uncertainty
error = np.random.normal(0, uncert) # Noise for the data
data = y + error # Noisy data set

Note

See the Data Section below to find out how to set data and uncert as a filename.

Modeling Function

The func argument (required) defines the parameterized modeling function.
The user can set func either as a callable, e.g.:

Define the modeling function as a callable:
sys.path.append("../MCcubed/examples/models/")
from quadratic import quad
func = quad

or as a tuple of strings pointing to the modeling function, e.g.:

A three-elements tuple indicates the function name, the module
name (without the '.py' extension), and the path to the module.
func = ("quad", "quadratic", "../MCcubed/examples/models/")

Alternatively, if the module is already within the scope of the
Python path, the user can set func with a two-elements tuple:
sys.path.append("../MCcubed/examples/models/")
func = ("quad", "quadratic")

Note

Important!

The only requirement for the modeling function is that its arguments follow
the same structure of the callable in scipy.optimize.leastsq, i.e.,
the first argument contains the list of fitting parameters.

The indparams argument (optional) packs any additional argument that the
modeling function may require:

indparams contains additional arguments of func (if necessary). Each
additional argument is an item in the indparams tuple:
indparams = [x]

Note

Even if there is only one additional argument to func, indparams must
be defined as a tuple (as in the example above). Eventually, the modeling
function could be called with the following command:

model = func(params, *indparams)

Fitting Parameters

The params argument (required) contains the initial-guess values for the model fitting parameters. The params argument must be a 1D float ndarray.

Array of initial-guess values of fitting parameters:
params = np.array([10.0, -2.0, 0.1])

The pmin and pmax arguments (optional) set the lower and upper boundaries explored by the MCMC for each fitting parameter.

Lower and upper boundaries for the MCMC exploration:
pmin = np.array([-10.0, -20.0, -10.0])
pmax = np.array([40.0, 20.0, 10.0])

If a proposed step falls outside the set boundaries,
that iteration is automatically rejected.
The default values for each element of pmin and pmax are
-np.inf and +np.inf, respectively.
The pmin and pmax arrays must have the same size of params.

Stepsize, Fixed, and Shared Parameters

The stepsize argument (required) is a 1D float ndarray,
where each element correspond to one of the fitting parameters.

stepsize = np.array([1.0, 0.5, 0.1])

The stepsize has a dual purpose: (1) detemines the free, fixed, and
shared parameters; and (2) determines the step size of proposal jumps.

To fix a parameter at the given initial-guess value,
set the stepsize of the given parameter to \(0\).
To share the same value for multiple parameters along the MCMC exploration,
set the stepsize of the parameter equal to the negative
index of the sharing parameter, e.g.:

If I want the second, third, and fourth model parameters to share the same value:
stepsize = np.array([1.0, 3.0, -2, -2])

Note

Clearly, in the current example it doesn’t make sense to share parameter
values. However, for an eclipe model for example, one may want to share
the ingress and egress times.

Additionally, when walk='mrw' (see Random Walk section), stepsize
sets the standard deviation, \(\sigma\), of the Gaussian proposal jump for
the given parameter (see Eq. (3)).

Lastly, stepsize sets the standard deviation of the initial sampling
for the chains (see MCMC Config section).

Parameter Priors

The prior, priorlow, and priorup arguments (optional) set the
prior probability distributions of the fitting parameters.
Each of these arguments is a 1D float ndarray.

priorlow defines whether to use uniform non-informative (priorlow = 0.0),
Jeffreys non-informative (priorlow < 0.0), or Gaussian prior (priorlow > 0.0).
prior and priorup are irrelevant if priorlow <= 0 (for a given parameter)
prior = np.array([0.0, 0.0, 0.0])
priorlow = np.array([0.0, 0.0, 0.0])
priorup = np.array([0.0, 0.0, 0.0])

MC3 supports three types of priors.
If a value of priorlow is \(0.0\) (default) for a given parameter,
the MCMC will apply a uniform non-informative prior:

\[p(\theta) = \frac{1}{\theta_{\rm max} - \theta_{\rm min}},\]

Note

This is appropriate when there is no prior knowledge of the
value of \(\theta\).

If priorlow is less than \(0.0\) for a given parameter,
the MCMC will apply a Jeffreys non-informative prior
(uniform probability per order of magnitude):

(1)\[p(\theta) = \frac{1}{\theta \ln(\theta_{\rm max}/\theta_{\rm min})},\]

Note

This is valid only when the parameter takes positive values.
This is a more appropriate prior than a uniform prior when \(\theta\)
can take values over several orders of magnitude.
For more information, see [Gregory2005], Sec. 3.7.1.

Note

Practical note!

In practice, I have seen better results when one fits
\(\log(\theta)\) rather than \(\theta\) with a Jeffreys prior.

Lastly, if priorlow is greater than \(0.0\) for a given parameter,
the MCMC will apply a Gaussian informative prior:

\[p(\theta) = \frac{1}{\sqrt{2\pi\sigma_{p}^{2}}}
 \exp\left(\frac{-(\theta-\theta_{p})^{2}}{2\sigma_{p}^{2}}\right),\]

where prior sets the prior value \(\theta_{p}\), and
priorlow and priorup
set the lower and upper \(1\sigma\) prior uncertainties,
\(\sigma_{p}\), of the prior (depending if the proposed value
\(\theta\) is lower or higher than \(\theta_{p}\)).

Note

Note that, even when the parameter boundaries are not known or when
the parameter is unbound, this prior is suitable for use in the MCMC
sampling, since the proposed and current state priors divide out in
the Metropolis ratio.

Parameter Names

The pnames argument (optional) define the names of the model
parametes to be shown in the scren output and figure labels. In
figures, the names can use LaTeX syntax. The screen output will
display up to 11 characters. Thus, the user can define the
texnames argument (optional), display the appropriate syntax for
screen output and figures, for example:

pnames = ["log(alpha)", "beta", "Teff"]
texnames = [r"$\log(\alpha)$", r"β", r"$T_{\rm eff}$"]

If texnames is None, it defaults to pnames. If pnames
is None, it defaults to texnames. If both arguments are
None, they default to a generic [Param 1, Param 2, ...] list.

Random Walk

The walk argument (optional) defines which random-walk algorithm
for the MCMC:

Choose between: 'snooker', 'demc', or 'mrw':
walk = 'snooker'

The standard Differential-Evolution MCMC algorithm (walk = 'demc',
[terBraak2006]) proposes for each chain \(i\) in state
\(\mathbf{x}_{i}\):

(2)\[\mathbf{x}^* = \mathbf{x}_i + \gamma (\mathbf{x}_{R1}-\mathbf{x}_{R2}) + \mathbf{e},\]

where \(\mathbf{x}_{R1}\) and \(\mathbf{x}_{R2}\) are randomly
selected without replacement from the population of current states
without \(\mathbf{x}_{i}\). This implementation adopts
\(\gamma=f_{\gamma} 2.38/\sqrt{2 N_{\rm free}}\), and
\(\mathbf{e}\sim N(0, f_{e}\,{\rm stepsize})\), with
\(N_{\rm free}\) the number of free parameters. The scaling factors
are defaulted to \(f_{\gamma}=1.0\) and \(f_{e}=0.0\) (see
Fine-tuning).

If walk = 'snooker' (default, recommended), MC3 will use the
DEMC-z algorithm with snooker propsals (see [BraakVrugt2008]).

If walk = 'mrw', MC3 will use the classical Metropolis-Hastings
algorithm with Gaussian proposal distributions. I.e., in each
iteration and for each parameter, \(\theta\), the MCMC will propose
jumps, drawn from
Gaussian distributions centered at the current value, \(\theta_0\), with
a standard deviation, \(\sigma\), given by the values in the stepsize
argument:

(3)\[q(\theta) = \frac{1}{\sqrt{2 \pi \sigma^2}}
 \exp \left(-\frac{(\theta-\theta_0)^2}{2 \sigma^2}\right)\]

Note

For walk=snooker, an MCMC works well from 3 chains. For
walk=demc, [terBraak2006] suggest using \(2*d\) chains,
with \(d\) the number of free parameters.

I recommend any of the snooker or demc
algorithms, as they are more efficient than most others MCMC random
walks. From experience, when deciding between these two, consider
that when the initial guess lays far from the lowest chi-square
region, snooker seems to produce lower acceptance rates than ideal
(which is solvable setting leastsq=True). On the other hand,
demc is limited to a high number of chains when there is a high
number of free parameters.

MCMC Config

The following arguments set the MCMC chains configuration:

nsamples = 1e5 # Number of MCMC samples to compute
nchains = 7 # Number of parallel chains
nproc = 7 # Number of CPUs to use for chains (default: nchains)
burnin = 1000 # Number of burned-in samples per chain
thinning = 1 # Thinning factor for outputs

Distribution for the initial samples:
kickoff = 'normal' # Choose between: 'normal' or 'uniform'
hsize = 10 # Number of initial samples per chain

The nsamples argument (optional, float, default=1e5) sets the
total number of samples to compute. The approximate number of
iterations run for each chain will be nsamples/nchains.

The nchains argument (optional, integer, default=7) sets the number
of parallel chains to use. The number of iterations run for each chain
will be approximately nsamples/nchains.

MC3 runs in multiple processors through the mutiprocessing
package. The nproc argument (optional, integer,
default= nchains) sets the number CPUs to use for the chains.
Additionaly, the central MCMC hub will use one extra CPU. Thus, the
total number of CPUs used is nchains + 1.

Note

If nproc+1 is greater than the number of available CPUs
in the machine (nCPU), MC3 will set nproc =
nCPU-1. To keep a good balance, I recommend setting
nchains equal to a multiple of nproc.

The burnin argument (optional, integer, default=0) sets the number
of burned-in (removed) iterations at the beginning of each chain.

The thinning argument (optional, integer, default=1) sets the chains
thinning factor (discarding all but every thinning-th sample).
To reduce the memory usage, when requested, only the thinned samples
are stored (and returned).

Note

Thinning is often unnecessary for a DE run, since this algorithm
reduces significatively the sampling autocorrelation.

To set the starting point of the MCMC chains, MC3 draws samples either
from a normal (default) or uniform distribution (determined by
the kickoff argument). The mean and standard deviation of the normal
distribution are set by the params and stepsize arguments,
respectively.
The uniform distribution is constrained between the pmin and pmax
boundaries.
The hsize argument determines the size of the starting sample.
All draws from the initial sample are discarded from the returned
posterior distribution.

Optimization

The leastsq argument (optional, boolean, default=False) is a flag that
indicates MC3 to run a least-squares optimization before running the MCMC.
MC3 implements the Levenberg-Marquardt algorithm (lm=True) via
scipy.optimize.leastsq or Trust Region Reflective (lm=False) via
scipy.optimize.least_squares.

Note

The parameter boundaries (for TRF only, see Optimization Tutorial),
fixed and shared-values, and priors will apply for the minimization.

The chisqscale argument (optional, boolean, default=False) is a flag that
indicates MC3 to scale the data uncertainties to force a reduced
\(\chi^{2}\) equal to \(1.0\). The scaling applies by multiplying all
uncertainties by a common scale factor.

leastsq = True # Least-squares minimization prior to the MCMC
lm = True # Choose Levenberg-Marquardt (True) or TRF algorithm (False)
chisqscale = False # Scale the data uncertainties such that red. chisq = 1

Convergence

The grtest argument (optional, boolean, default=False) is a flag that
indicates MC3 to run the Gelman-Rubin convergence test for the MCMC sample of
fitting parameters.
Values larger than 1.01 are indicative of non-convergence.
See [GelmanRubin1992] for further information.

Additionally, the grbreak argument (optional, boolean,
default=0.0) sets a convergence threshold to stop an MCMC when GR
drops below grbreak. Reasonable values seem to be grbreak
~1.001–1.005. The default behavior is not to break (grbreak=0.0).

Lastly, the grnmin argument (optional, integer or float,
default=0.5) sets a minimum number of valid samples (after burning and
thinning) required for grbreak. If grnmin is an integer,
require at least grnmin samples to break out of the MCMC. If
grnmin is a float (in the range 0.0–1.0), require at least
grnmin times the maximum possible number of valid samples to break
out of the MCMC.

grtest = True # Calculate the GR convergence test
grbreak = 0.0 # GR threshold to stop the MCMC run
grnmin = 0.5 # Minimum fraction or number of samples before grbreak

Note

The Gelman-Rubin test is computed every 10% of the MCMC exploration.

Wavelet-Likelihood MCMC

The wlike argument (optional, boolean, default=False) allows MC3 to
implement the Wavelet-based method to estimate time-correlated noise.
When using this method, the used must append the three additional fitting
parameters (\(\gamma, \sigma_{r}, \sigma_{w}\)) from Carter & Winn (2009)
to the end of the params array. Likewise, add the correspoding values
to the pmin, pmax, stepsize, prior, priorlow,
and priorup arrays.
For further information see [CarterWinn2009].

wlike = False # Use Carter & Winn's Wavelet-likelihood method.

Fine-tuning

The \(f_{\gamma}\) and \(f_{e}\) factors scale the DEMC
proposal distributions.

fgamma = 1.0 # Scale factor for DEMC's gamma jump.
fepsilon = 0.0 # Jump scale factor for DEMC's "e" distribution

The default \(f_{\gamma}=1.0\) value is set such that the MCMC
acceptance rate approaches 25-40%. Therefore, most of the time, the
user won’t need to modify this. Only if the acceptance rate is very
low, we recommend to set \(f_{\gamma}<1.0\). The \(f_{e}\)
factor sets the jump scale for the \(\mathbf e\) distribution,
which has to have a small variance compared to the posterior.
For further information see [terBraak2006].

File Outputs

The following arguments set the output files produced by MC3:

log = 'MCMC.log' # Save the MCMC screen outputs to file
savefile = 'MCMC_sample.npz' # Save the MCMC parameters sample to file
plots = True # Generate best-fit, trace, and posterior plots
rms = False # Compute and plot the time-averaging test
full_output = False # Return the full posterior sample
chireturn = False # Return chi-square statistics

The log argument (optional, string, default = None)
sets the file name where to store MC3’s screen output.

The savefile arguments (optional, string, default = None) set
the file names where to store the MCMC outputs into a .npz file,
with keywords bestp, CRlo, CRhi, stdp, meanp,
Z, Zchain, and Zchisq, bestchisq, redchisq,
chifactor, BIC, and standard deviation of the residuals sdr.
The files can be read with the
numpy.load() function. See Returned Values and the description of
chireturn below for details on the output values.

The plots argument (optional, boolean, default = False) is a
flag that indicates MC3 to generate and store the data (along with the
best-fitting model) plot, the MCMC-chain trace plot for each
parameter, and the marginalized and pair-wise posterior plots.

The rms argument (optional, boolean, default = False) is a
flag that indicates MC3 to compute the time-averaging test for
time-correlated noise and generate a rms-vs-binsize plot (see
[Winn2008]).

The full_output argument (optional, bool, default = False)
flags the code to return the full posterior sampling array (Z),
including the initial and burnin samples. The posterior will still be
thinned though.

If the chireturn argument (optional, bool, default = False) is
True, MC3 will return an additional tuple containing the
chi-square stats: lowest \(\chi^{2}\) (bestchisq),
\(\chi^{2}_{\rm red}\) (redchisq), scaling factor to enforce
\(\chi^{2}_{\rm red} = 1\) (chifactor), and the Bayesian
Information Criterion BIC (BIC).

Returned Values

When run from a pyhton interactive session, MC3 will return a
tuple with six elements (seven if chireturn=True, see above):

	bestp: a 1D array with the best-fitting parameters (including
fixed and shared parameters).

	CRlo: a 1D array with the lower boundary of the marginal 68%-highest
posterior density (the credible region) for each parameter,
with respect to bestp.

	CRhi:a 1D array with the upper boundary of the marginal
68%-highest posterior density for each parameter, with respect to
bestp.

	stdp: a 1D array with the standard deviation of the marginal
posterior for each parameter (including that of fixed and shared
parameters).

	posterior: a 2D array containing the burned-in, thinned MCMC
sample of the parameters posterior distribution (with dimensions
[nsamples, nfree], excluding fixed and shared parameters).

	Zchain: a 1D array with the indices of the chains for each
sample in posterior.

Run the MCMC:
bestp, CRlo, CRhi, stdp, posterior, Zchain = mc3.mcmc(data=data,
 uncert=uncert, func=func, indparams=indparams,
 params=params, pmin=pmin, pmax=pmax, stepsize=stepsize,
 prior=prior, priorlow=priorlow, priorup=priorup,
 walk=walk, nsamples=nsamples, nchains=nchains,
 nproc=nproc, burnin=burnin, thinning=thinning,
 leastsq=leastsq, lm=lm, chisqscale=chisqscale,
 hsize=hsize, kickoff=kickoff,
 grtest=grtest, grbreak=grbreak, grnmin=grnmin,
 wlike=wlike, log=log,
 plots=plots, savefile=savefile, rms=rms, full_output=full_output)

Note

Note that bestp, CRlo, CRhi, and stdp
include the values for all model parameters, including fixed and
shared parameters, whereas posterior includes only
the free parameters. Be careful with the dimesions.

Inputs from Files

The data, uncert, indparams, params, pmin, pmax,
stepsize, prior, priorlow, and priorup input arrays
can be optionally be given as input file.
Furthermore, multiple input arguments can be combined into a single file.

Data

The data, uncert, and indparams inputs can be provided as
binary numpy .npz files.
data and uncert can be stored together into a single file.
An indparams input file contain the list of independent variables
(must be a list, even if there is a single independent variable).

The utils sub-package of MC3 provide utility functions to
save and load these files.
The preamble.py file in
demo02 [https://github.com/pcubillos/MCcubed/blob/master/examples/demo02/]
gives an example of how to create data and indparams input files:

Import the necessary modules:
import sys
import numpy as np

Import the modules from the MCcubed package:
sys.path.append("../MCcubed/")
import MCcubed as mc3
sys.path.append("../MCcubed/examples/models/")
from quadratic import quad

Create a synthetic dataset using a quadratic polynomial curve:
x = np.linspace(0.0, 10, 1000) # Independent model variable
p0 = [3, -2.4, 0.5] # True-underlying model parameters
y = quad(p0, x) # Noiseless model
uncert = np.sqrt(np.abs(y)) # Data points uncertainty
error = np.random.normal(0, uncert) # Noise for the data
data = y + error # Noisy data set

data.npz contains the data and uncertainty arrays:
mc3.utils.savebin([data, uncert], 'data.npz')
indp.npz contains a list of variables:
mc3.utils.savebin([x], 'indp.npz')

Fitting Parameters

The params, pmin, pmax, stepsize,
prior, priorlow, and priorup inputs
can be provided as plain ASCII files.
For simplycity all of these input arguments can be combined into
a single file.

In the params file, each line correspond to one model
parameter, whereas each column correspond to one of the input array arguments.
This input file can hold as few or as many of these argument arrays,
as long as they are provided in that exact order.
Empty or comment lines are allowed (and ignored by the reader).
A valid params file look like this:

params pmin pmax stepsize
 10 -10 40 1.0
 -2.0 -20 20 0.5
 0.1 -10 10 0.1

Alternatively, the utils sub-package of MC3 provide utility
functions to save and load these files:

params = [10, -2.0, 0.1]
pmin = [-10, -20, -10]
pmax = [40, 20, 10]
stepsize = [1, 0.5, 0.1]

Store ASCII arrays:
mc3.utils.saveascii([params, pmin, pmax, stepsize], 'params.txt')

Then, to run the MCMC simply provide the input file names to the MC3
routine:

To run MCMC, set the arguments to the file names:
data = 'data.npz'
indparams = 'indp.npz'
params = 'params.txt'
Run MCMC:
bestp, CRlo, CRhi, stdp, posterior, Zchain = mc3.mcmc(data=data,
 func=func, indparams=indparams, params=params,
 walk=walk, nsamples=nsamples, nchains=nchains,
 nproc=nproc, burnin=burnin, thinning=thinning,
 leastsq=leastsq, lm=lm, chisqscale=chisqscale,
 hsize=hsize, kickoff=kickoff,
 grtest=grtest, grbreak=grbreak, grnmin=grnmin,
 wlike=wlike, log=log,
 plots=plots, savefile=savefile, rms=rms, full_output=full_output)

References

	CarterWinn2009

	Carter & Winn (2009): Parameter Estimation from Time-series Data with Correlated Errors: A Wavelet-based Method and its Application to Transit Light Curves [http://adsabs.harvard.edu/abs/2009ApJ...704...51C]

	GelmanRubin1992

	Gelman & Rubin (1992): Inference from Iterative Simulation Using Multiple Sequences [http://projecteuclid.org/euclid.ss/1177011136]

	Gregory2005

	Gregory (2005): Bayesian Logical Data Analysis for the Physical Sciences [http://adsabs.harvard.edu/abs/2005blda.book.....G]

	terBraak2006(1,2,3)

	ter Braak (2006): A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution [http://dx.doi.org/10.1007/s11222-006-8769-1]

	BraakVrugt2008

	ter Braak & Vrugt (2008): Differential Evolution Markov Chain with snooker updater and fewer chains [http://dx.doi.org/10.1007/s11222-008-9104-9]

	Winn2008

	Winn et al. (2008): The Transit Light Curve Project. IX. Evidence for a Smaller Radius of the Exoplanet XO-3b [http://adsabs.harvard.edu/abs/2008ApJ...683.1076W]

Optimization Tutorial

The MCcubed.fit module provides the modelfit routine for
model-fitting optimization through the least-squares
Levenberg-Marquardt algorith.

modelfit is a wrapper of scipy.optimize’s leastsq and
least_squares routines, with additional features, including
Gaussian-parameter priors, and sharing and fixing parameters.
All modelfit arguments are identical to those of the MCMC.

Optimization Algorithm

The lm argument (default: False) determines the optimization
algorithm. If lm=True, use the Levenberg-Marquardt algorithm (through
scipy.optimize.leastsq). If lm=False, use the Trust Region
Reflective algorithm (through scipy.optimize.least_squares).

Note that although LM is more efficient than TRF, LM does not support
parameter boundaries. A LM run will find the un-bounded
best-fitting solution, regardless of pmin and pmax.

For the same reason, if the model parameters are not bounded (i.e.,
np.all(pmin==-np.inf) and np.all(pmax==np.inf)), modelfit
will use the LM algorithm.

Fitting Parameters

The params argument (required) contains the initial-guess values
for the model fitting parameters. The params argument must be
a 1D float ndarray.

Modeling Function

The func argument (required) defines the parameterized modeling function.
The only requirement for the modeling function is that its arguments follow
the same structure of the callable in scipy.optimize.leastsq, i.e.,
the first argument contains the list of fitting parameters.

If func requires additional arguments, they can be provided through
the indparams argument (see Independent Parameters).
Eventually, the modeling function could be called with the following command:

model = func(params, *indparams)

Data and Data Uncertainties

The data argument (required) defines the dataset to be fitted.
This argument can be either a 1D float ndarray or the filename (a string)
where the data array is located.

The uncert argument (required) defines the \(1\sigma\) uncertainties
of the data array.
This argument can be either a 1D float ndarray (same length of data) or the filename where the data uncertainties are located.

Independent Parameters

The indparams argument (optional) is a tuple (or list) that packs
any additional arguments required by func.
Even if indparams consists of a single variable, it must be defined
as a list or tuple.

Stepsize: Fixed, and Shared Paramerers

The stepsize argument (optional) is a 1D float ndarray,
where each element correspond to one of the fitting parameters.
For optimization, stepsize determines the free, fixed, and shared
parameters.
If the stepsize is positive (irrelevant of the value), the parameter is
a free fitting parameter.

To fix a parameter at the given initial-guess value,
set the stepsize of the given parameter to \(0\).

To copy the value from another parameter (free or fixed),
set the stepsize equal to the negative index of the sharing
parameter.

Note

Consider that in this case, contrary to Python standards,
the indexing starts counting from one instead of zero. Thus,
for example, to share a value with that of the first parameter,
set the parameter’s stepsize to \(-1\).

Parameter Boundaries

The pmin and pmax arguments (optional) are 1D float ndarrays that
set the lower and upper boundaries explored by the minimizer for each
fitting parameter (same size of params).
The default values for each element of pmin and pmax are
-np.inf and +np.inf, respectively.

Parameter Priors

The prior, priorlow, and priorup arguments (optional) set the
prior probability distributions of the fitting parameters.
Each of these arguments is a 1D float ndarray.

If a value of priorlow is \(0.0\) (default) for a given parameter,
the MCMC will apply a uniform non-informative prior:

(1)\[p(\theta) = \frac{1}{\theta_{\rm max} - \theta_{\rm min}},\]

Note

This is appropriate when there is no prior knowledge of the
value of \(\theta\).

If priorlow is greater than \(0.0\) for a given parameter,
the MCMC will apply a Gaussian informative prior:

(2)\[p(\theta) = \frac{1}{\sqrt{2\pi\sigma_{p}^{2}}}
 \exp\left(\frac{-(\theta-\theta_{p})^{2}}{2\sigma_{p}^{2}}\right),\]

where prior sets the prior value \(\theta_{p}\), and
priorlow and priorup
set the lower and upper \(1\sigma\) prior uncertainties,
\(\sigma_{p}\), of the prior (depending if the proposed value
\(\theta\) is lower or higher than \(\theta_{p}\)).

Outputs

modelfit returns four variables:

	chisq (float) is the best-fitting chi-square value.

	bestparams (1D float ndarray) is the array of best-fitting parameters,
including fixed and shared parameters.

	
	bestmodel (1D float ndarray) is the best-fitting model found, i.e.,

	func(bestparams, *indparams).

	lsfit is the output from the scipy optimization routine.

Example

import sys
import MCcubed as mc3 # Add path to mc3 if necessary

Get a modeling function (quadractic polynomial):
sys.path.append("./examples/models/") # Set the appropriate path
from quadratic import quad

Create a synthetic dataset using a quadratic polynomial curve:
x = np.linspace(0, 10, 1000) # Independent model variable
p0 = [3, -2.4, 0.5] # True-underlying model parameters
y = quad(p0, x) # Noiseless model
uncert = np.sqrt(np.abs(y)) # Data points uncertainty
error = np.random.normal(0, uncert) # Noise for the data
data = y + error # Noisy data set

Array of initial-guess values of fitting parameters:
params = np.array([20.0, -2.0, 0.1])

func = quad

indparams contains additional arguments of func (besides params):
indparams = [x]

params = np.array([1.0, 0.0, 0.3])
stepsize = np.array([1.0, 1.0, 1.0]) # All model parameters free
pmin = np.array([-10.0, -20.0, -10.0]) # Lower param boundaries
pmax = np.array([40.0, 20.0, 10.0]) # Upper param boundaries
prior = np.array([0.0, 0.0, 0.0])
priorlow = np.array([0.0, 0.0, 0.0]) # Flat priors
priorup = np.array([0.0, 0.0, 0.0])
prior and priorup are irrelevant if priorlow == 0 (for a given parameter)

chisq, bestp, bestmodel, lsfit = mc3.fit.modelfit(params, quad,
 data, uncert, indparams=indparams,
 stepsize=stepsize, pmin=pmin, pmax=pmax,
 prior=prior, priorlow=priorlow, priorup=priorup, lm=True)

Time Averaging

The MCcubed.rednoise.binrms routine computes the binned RMS array
(as function of bin size) used in the the time-averaging procedure.
Given a (model-data) residuals array. The routine returns the RMS of
the binend data (\({\rm rms}_N\)), the lower and upper RMS
uncertainties, the extrapolated RMS for Gaussian (white) noise
(\(\sigma_N\)), and the bin-size array (\(N\)).

This function uses an asymptotic approximation to compute the RMS
uncertainties (\(\sigma_{\rm rms} = \sqrt{{\rm rms}_N / 2M}\)) for
number of bins \(M> 35\). For smaller values of \(M\)
(equivalently, large bin size) this routine computes the errors from
the posterior PDF of the RMS (an inverse-gamma distribution). See
[Cubillos2017].

Example

import numpy as np
import matplotlib.pyplot as plt
import MCcubed as mc3 # Add path to mc3 if necessary
plt.ion()

Generate residuals signal:
N = 1000
White-noise signal:
white = np.random.normal(0, 5, N)
(Sinusoidal) time-correlated signal:
red = np.sin(np.arange(N)/(0.1*N))*np.random.normal(1.0, 1.0, N)

Plot the time-correlated residuals signal:
plt.figure(0)
plt.clf()
plt.plot(white+red, ".k")
plt.ylabel("Residuals", fontsize=14)

Compute the residuals rms-vs-binsize:
maxbins = N/5
rms, rmslo, rmshi, stderr, binsz = mc3.rednoise.binrms(white+red, maxbins)

Plot the rms with error bars along with the Gaussian standard deviation curve:
plt.figure(-6)
plt.clf()
plt.errorbar(binsz, rms, yerr=[rmslo, rmshi], fmt="k-", ecolor='0.5', capsize=0, label="Data RMS")
plt.loglog(binsz, stderr, color='red', ls='-', lw=2, label="Gaussian std.")
plt.xlim(1,200)
plt.legend(loc="upper right")
plt.xlabel("Bin size", fontsize=14)
plt.ylabel("RMS", fontsize=14)

[image: _images/time-correlated_signal.png]
[image: _images/rms-vs-binsize.png]

References

	Cubillos2017

	Cubillos et al. (2017): On the Correlated-noise
Analyses Applied to Exoplanet Light Curves [http://adsabs.harvard.edu/abs/2017AJ....153....3C]

Contributing

Feel free to contribute to this repository by submitting code pull
requests, raising issues, or emailing the administrator directly.

Raising Issues

Whenever you want to raise a new issue, make sure that it has not
already been mentioned in the issues list. If an issue exists, consider
adding a comment if you have extra information that further describes
the issue or may help to solve it.

If you are reporting a bug, make sure to be fully descriptive of the
bug, including steps to reproduce the bug, error output logs, etc.

Make sure to designate appropriate tags to your issue.

An issue asking for a new functionality must include the wish list
tag. These issues must include an explanation as to why is such
feature necessary. Note that if you also provide ideas, literature
references, etc. that contribute to the implementation of the
requested functionality, there will be more chances of the issue being
solved.

Programming Style

Everyone has his/her own programming style, I respect that. However,
some people have terrible style (see
http://www.abstrusegoose.com/432). Following good coding practices
make everyone happy, it will increase the chances of your code being
added to the main repository, and it will make me work less. I strongly
recommend the following programming guidelines:

	Always keep it simple.

	Lines are strictly 80 character long, no more.

	Never ever! use tabs (for any reason, just don’t).

	Avoid hard-coding values at all cost.

	One–two character variable names are too short to be meaningful.

	Indent with 2 spaces.

	Put whitespace around operators and after commas.

	Separate lines (within a common block of code) by at most 0 whitespace lines (yes, zero).

	Separate blocks of code by at most 1 whitespace lines.

	Separate methods/functions/clasess by at most 2 whitespace lines.

	Use a header comment (1+ whole line) to describe a code block.

	Use in-line comments to describe code withing a block.

	Necessary contraptions require meaningful comments.

	Always, always make a docstring.

	Use is to compare with None, True, and False.

	Limit try clauses to the bare minimum.

Good pieces of code that do not follow these principles will
still be gratefully accepted, but with a frowny face.

Pull Requests

To submit a pull request you will need to first (only once) fork the
repository into your account. Edit the changes in your
repository. When making a commit, always include a descriptive message
of what changed. Then, click on the pull request button.

More on this later, which branch to pull, git Work flow, etc.

License

The MIT License (MIT)

Copyright (c) 2015-2019 Patricio Cubillos and Collaborators

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Index

 _images/rms-vs-binsize.png
RMS

10

107 [

— Gaussian std.
—{ Data RMS

10

1

Bin size

10°

_images/time-correlated_signal.png
20 -

Residuals

=20
0 200 400 600 800 1000

_images/quad_pairwise.png
5 @ n
2 3

Ayisuap Jouizjsod

)] 9
S S S

o
-

H
B

Jeauy

1
It

°
9

3
Snespend

constant

linear

_images/quad_trace.png
, constant
NN owow
N oo

linear
b
RS

[

20000

40000
MCMC sample

60000

80000

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_images/quad_bestfit.png
3!

3

2!

2

5

0

5

0

> 15

Residuals

=
o

o o u

A WNHORNW

Best-fitting Model

— Best Fit
§ { Binned Data

Hiiﬁﬁl'""“""'""!Hiii?iﬁ'iﬁiﬁﬂiﬂﬁﬁf{'{H{' { L {H%%H

Lt

o

2

4

6

8 10

_images/quad_hist.png
14000
12000
10000

B
8
8
8

6000
4000

sa|dwes x

2000

50

£50

250

150

050 5

atic

El
6v0 B

8v'0

1v0

or'0
Tz

Tz-

87—

o€

vE

[43

o€

8z

x4

vz

constant

_static/down.png

nav.xhtml

 Table of Contents

 		
 Multi-Core Markov-Chain Monte Carlo (MC3)

 		
 Getting Started

 		
 System Requirements

 		
 Install

 		
 Compile

 		
 Example 1 Interactive

 		
 Outputs

 		
 Example 2: Shell Run

 		
 Troubleshooting

 		
 MCMC Tutorial

 		
 Argument Inputs

 		
 Configuration Files

 		
 MCMC Run

 		
 Input Data

 		
 Modeling Function

 		
 Fitting Parameters

 		
 Stepsize, Fixed, and Shared Parameters

 		
 Parameter Priors

 		
 Parameter Names

 		
 Random Walk

 		
 MCMC Config

 		
 Optimization

 		
 Convergence

 		
 Wavelet-Likelihood MCMC

 		
 Fine-tuning

 		
 File Outputs

 		
 Returned Values

 		
 Inputs from Files

 		
 Data

 		
 Fitting Parameters

 		
 References

 		
 Optimization Tutorial

 		
 Optimization Algorithm

 		
 Fitting Parameters

 		
 Modeling Function

 		
 Data and Data Uncertainties

 		
 Independent Parameters

 		
 Stepsize: Fixed, and Shared Paramerers

 		
 Parameter Boundaries

 		
 Parameter Priors

 		
 Outputs

 		
 Example

 		
 Time Averaging

 		
 Example

 		
 References

 		
 Contributing

 		
 Raising Issues

 		
 Programming Style

 		
 Pull Requests

 		
 License

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

